Three-Dimensional Sulfur/Graphene Multifunctional Hybrid Sponges for Lithium-Sulfur Batteries with Large Areal Mass Loading
نویسندگان
چکیده
In this communication, we introduce the concept of three dimensional (3D) battery electrodes to enhance the capacity per footprint area for lithium-sulfur battery. In such a battery, 3D electrode of sulfur embedded into porous graphene sponges (S-GS) was directly used as the cathode with large areal mass loading of sulfur (12 mg cm(-2)), approximately 6-12 times larger than that of most reports. The graphene sponges (GS) worked as a framework that can provide high electronic conductive network, abilities to absorb the polysulfides intermediate, and meanwhile mechanical support to accommodate the volume changes during charge and discharge. As a result, the S-GS electrode with 80 wt.% sulfur can deliver an extremely high areal specific capacitance of 6.0 mAh cm(-2) of the 11(th) cycle, and maintain 4.2 mAh cm(-2) after 300 charge-discharge cycles at a rate of 0.1C, representing an extremely low decay rate (0.08% per cycle after 300 cycles), which could be the highest areal specific capacity with comparable cycle stability among the rechargeable Li/S batteries reported ever.
منابع مشابه
Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries.
Due to its high theoretical capacity, high energy density, and easy availability, the lithium-sulfur (Li-S) system is considered to be the most promising candidate for electric and hybrid electric vehicle applications. Sulfur/carbon cathode in Li-S batteries still suffers, however, from low Coulombic efficiency and poor cycle life when sulfur loading and the ratio of sulfur to carbon are high. ...
متن کاملHigh Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries
Although sulfur has a high theoretical gravimetric capacity, 1672mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low massloading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conductingagent integration is critically important. In thi...
متن کاملPie-like electrode design for high-energy density lithium-sulfur batteries.
Owing to the overwhelming advantage in energy density, lithium-sulfur (Li-S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a 'pie' structured electrode, which provides an excellent balance betw...
متن کاملJanus Separator of Polypropylene‐Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries
Owing to the conversion chemistry of the sulfur cathode, the lithium-sulfur (Li-S) batteries exhibit high theoretical energy density. However, the intrinsic mobile redox centers during the sulfur/Li2S-to-lithium polysulfides solid-to-liquid phase transition induce low sulfur utilization and poor cycling life. Herein, the Janus separator of mesoporous cellular graphene framework (CGF)/polypropyl...
متن کاملSandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries.
A functionalized graphene sheet-sulfur (FGSS) nanocomposite was synthesized as the cathode material for lithium-sulfur batteries. The structure has a layer of functionalized graphene sheets/stacks (FGS) and a layer of sulfur nanoparticles creating a three-dimensional sandwich-type architecture. This unique FGSS nanoscale layered composite has a high loading (70 wt%) of active material (S), a hi...
متن کامل